The rate of surplus-value is therefore an exact expression for the degree of exploitation of labour-power by capital, or of the labourer by the capitalist.7

We assumed in our example, that the value of the product £410 const. + £90 var. + £90 surpl., and that the capital advanced = £500. Since the surplus-value = £90, and the advanced capital = £500, we should, according to the usual way of reckoning, get as the rate of surplus-value (generally confounded with rate of profits) 18%, a rate so low as possibly to cause a pleasant surprise to Mr. Carey and other harmonisers. But in truth, the rate of surplus-value is not equal to s/C or s/C+v: thus it is not 90/500 but 90/500 or 100%, which is more than five times the apparent degree of exploitation. Although, in the case we have supposed, we are ignorant of the actual length of the working-day, and of the duration in days or weeks of the labour-process, as also of the number of labourers employed, yet the rate of surplus-value s/v accurately discloses to us, by means of its equivalent expression, surplus-labour/necessary labour the relation between the two parts of the working-day. This relation is here one of equality, the rate being 100%. Hence, it is plain, the labourer, in our example, works one half of the day for himself, the other half for the capitalist.

The method of calculating the rate of surplus-value is therefore, shortly, as follows. We take the total value of the product and put the constant capital which merely re-appears in it, equal to zero. What remains, is the only value that has, in the process of producing the commodity, been actually created. If the amount of surplus-value be given, we have only to deduct it from this remainder, to find the variable capital. And vice versâ, if the latter be given, and we require to find the surplus-value. If both be given, we have only to perform the concluding operation, viz., to calculate s/v, the ratio of the surplus-value to the v variable capital.

Though the method is so simple, yet it may not be amiss, by means of a few examples, to exercise the reader in the application of the novel principles underlying it.

First we will take the case of a spinning mill containing 10,000 mule spindles, spinning No. 32 yarn from American cotton, and producing 1 lb. of yarn weekly per spindle. We assume the waste to be 6%: under these circumstances 10,600 lbs. of cotton are consumed weekly, of which 600 lbs. go to waste. The price of the cotton in April, 1871, was 7 3/4d. per lb.; the raw material therefore costs in round numbers £342. The 10,000 spindles, including preparation-machinery, and motive power, cost, we will assume, £1 per spindle, amounting to a total of £10,000. The wear and tear we put at 10%, or £1,000 yearly = £20 weekly. The rent of the building we suppose to be £300 a year, or £6 a week. Coal consumed (for 100 horse-power indicated, at 4 lbs. of coal per horse-power per hour during 60 hours, and inclusive of that consumed in heating the mill), 11 tons a week at 8s. 6 d. a ton, amounts to about £4 1/2 a week: gas, £1 a week, oil, &c., £4 1/2 a week. Total cost of the above auxiliary materials, £10 weekly. Therefore the constant portion of the value of the week's product is £378. Wages amount to £52 a week. The price of the yarn is 12 1/4d. per. lb. which gives for the value of 10,000 lbs. the sum of £510. The surplus-value is therefore in this case £510 - £430 = £80. We put the constant part of the value of the product = 0, as it plays no part in the creation of value. There remains £132 as the weekly value created, which = £52 var. + £80 surpl. The rate of surplus-value is therefore 80/52 = 153 11/13%. In a working-day of 10 hours with average labour the result is: necessary labour = 3 31/33 hours, and surplus-labour = 6 2/33.8

One more example. Jacob gives the following calculation for the year 1815. Owing to the previous adjustment of several items it is very imperfect; nevertheless for our purpose it is sufficient. In it he assumes the price of wheat to be 8s. a quarter, and the average yield per acre to be 22 bushels.

VALUE PRODUCED PER ACRE
Seed £1 9s. 0d. Tithes, Rates,
and taxes
£1 1s. 0d. 
Manure £2 10s. 0d. Rent £1 8s. 0d. 
Wages £3 10s. 0d. Farmer's Profit
and Interest 
£1 2s. 0d. 
TOTAL £7 9s. 0d. TOTAL £3 11s 0d. 

Assuming that the price of the product is the same as its value, we here find the surplus-value distributed under the various heads of profit, interest, rent, &c. We have. nothing to do with these in detail; we simply


  By PanEris using Melati.

Previous chapter/page Back Home Email this Search Discuss Bookmark Next chapter/page
Copyright: All texts on Bibliomania are © Bibliomania.com Ltd, and may not be reproduced in any form without our written permission. See our FAQ for more details.