is very remarkable that all stars of the main series have a central temperature of about 40 million degrees as nearly as we can calculate. It is difficult to resist the impression that there is some unusual property associated with this temperature, although all our physical instincts warn us that the idea is absurd.

But the vital point is the decrease of mass shown in the second column. if an individual star is to progress any part of the way down the main series it must lose mass. We can put the same inference in a more general way. Now that it has been found that luminosity depends mainly on mass, there can be no important evolution of faint stars from bright stars unless the stars lose a considerable part of their mass.

It is this result which has caused the hypothesis of annihilation of matter to be seriously discussed. All progress in the theory of stellar evolution is held up pending a decision on this hypothesis. If it is accepted it provides an easy key to these changes. The star may (after passing through the giant stage) reach the stage of Algol, and then by the gradual annihilation of the matter in it pass down the main series until when only one-sixteenth of the original mass remains it will be a faint red star like Krueger 60. But if there is no annihilation of matter, the star when once it has reached the dwarf stage seems to be immovable; it has to stay at the point of the series corresponding to its constant mass.

Let it be clearly understood what is the point at issue. The stars lose mass by their radiation; there is no question about that. The sun is losing 120 billion tons annually whether its radiation comes from annihilation of matter or any other internal source. The question is, How long can this loss continue? Unless there is annihilation of matter, all the mass that can escape as radiation will have escaped in a comparatively short time; the sun will then be extinct and there is an end to the loss and to the evolution. But if there is annihilation of matter the life of the sun and the loss of mass continue far longer, and an extended track of evolution lies open before the sun; when it has got rid of three-quarters of its present mass it will have become a faint star like Krueger 60.

Our choice between the possible theories of subatomic energy only affects stellar evolution in one point -- but it is the vital point. Unless we choose annihilation of matter, we cut the life of a star so short that there is no time for any significant evolution at all.

I feel the same objection that every one must feel to building extensively on a hypothetical process without any direct evidence that the laws of Nature permit of its occurrence. But the alternative is to leave the stars in sleepy uniformity with no prospect of development or change until their lives come to an end. Something is needed to galvanize the scene into that activity, whether of progress or decay, in which we have so long believed. Rather desperately we seize on the one visible chance. The petrified system wakes. The ultimate particles one by one yield up their energy and pass out of existence. Their sacrifice is the life-force of the stars which now progress on their high adventure :

  • Atoms or systems into ruin hurl'd,
  • And now a bubble burst, and now a world.

Radiation of Mass

Our first evidence of the extent of the time-scale of stellar evolution was afforded by the steadiness of condition of Cephei. This was supplemented by evidence of the great extension of geological time on the earth. We could not do more than set an upper limit to the rate of progress of evolution and a lower limit to the age of the stars. But this limit was sufficient to rule out the contraction hypothesis and drive us to consider the store of subatomic energy.

We now make a new attack, which depends on the belief that the rate of evolution is determined by the rate at which a star can get rid of its mass. We are here considering only the evolution of faint stars from bright stars, and there will remain scope for a certain amount of development in the giant stage to which our arguments will not directly apply. But to abandon all lines of evolution between bright stars and faint stars would mean admitting that one star differs from another star in brightness because it was


  By PanEris using Melati.

Previous chapter/page Back Home Email this Search Discuss Bookmark Next chapter/page
Copyright: All texts on Bibliomania are © Bibliomania.com Ltd, and may not be reproduced in any form without our written permission. See our FAQ for more details.