without, however, entertaining much hope of ever discovering the secret of releasing it. If it should prove that the stars have discovered the secret and are using this store to maintain their heat, our prospect of ultimate success would seem distinctly nearer.

I suppose that many physicists will regard the subject of subatomic energy as a field of airy speculation. That is not the way in which it presents itself to an astronomer. If it is granted that the stars evolve much more slowly than on the contraction-hypothesis, the measurement of the output of subatomic energy is one of the commonest astronomical measurements -- the measurement of [Note... A measurement of the heat observed to flow from a continuous fountain of heat is a measurement of the output of the fountain, unless there is a storing of energy between the output and the outflow. The breakdown of the Kelvin time-scale indicates that the storing in the stars (positive or negative) and consequent expansion or contraction is negligible compared to the output or outflow. ...] the heat or light of the stars. The collection of observational data as to the activity of liberation of subatomic energy is part of the routine of practical astronomy; and we have to pursue the usual course of arranging the measurements into some kind of coherence, so as to find out how the output is related to the temperature, density, or age of the material supplying it -- in short, to discover the laws of emission. From this point onwards the discussion may be more or less hypothetical according to the temperament of the investigator; and indeed it is likely that in this as in other branches of knowledge advances may come by a proper use of the scientific imagination. Vain speculation is to be condemned in this as in any other subject, and there is no need for it; the problem is one of induction from observation with due regard to our theoretical knowledge of the possibilities inherent in atomic structure.

I cannot pass from this subject without mentioning the penetrating radiation long known to exist in our atmosphere, which according to the researches of Kohlhorster and Millikan comes from outer space. Penetrating power is a sign of short wave-length and intense concentration of energy. Hitherto the greatest penetrating power has been displayed by Gamma rays originated by subatomic processes occurring in radio-active substances. The cosmic radiation is still more penetrating, and it seems reasonable to refer it to more energetic processes in the atom such as those suggested for the source of stellar energy. Careful measurements have been made by Millikan, and he concludes that the properties accord with those which should be possessed by radiation liberated in the transmutation of hydrogen; it is not penetrating enough to be attributed to a process so energetic as the annihilation of protons and electrons.

There seems to be no doubt that this radiation is travelling downwards from the sky. This is shown by measurements of its strength at different heights in the atmosphere and at different depths below the surface of mountain lakes; it is weakened according to the amount of air or water that it has had to traverse. Presumably its source must be extra-terrestrial. Its strength does not vary with the sun's altitude, so it is not coming from the sun. There is some evidence that it varies according to the position of the Milky Way, most radiation being received when the greatest extension of the stellar system is overhead. It cannot come from the interior of the stars, the penetrating power being too limited; all the hottest and densest matter in the universe is shut off from us by impenetrable walls. At the most it could come only from the outer rind of the stars where the temperature is moderate and the density is low; but it is more likely that its main source is in the diffuse nebulae or possibly in the matter forming the general cloud in space.[Note... The stars all put together cover an area of the sky much less than the apparent disk of the sun, so that unless their surface-layers are generating this radiation very much more abundantly than the sun does, they cannot be responsible for it....]

We must await further developments before we can regard the supposed subatomic origin of this radiation as other than speculative; we mention it here only as a possible opening for progress. It will be of great interest if we can reach by this means a more direct acquaintance with the processes which we assume to be the source of stellar energy; and the messages borne to us by the cosmic rays which purport to relate to these processes deserve the closest attention. Our views of stellar energy are likely to be affected on one crucial point. Hitherto we have usually supposed that the very high temperature in the interior of a star is one of the essential conditions for liberation of subatomic energy, and that a reasonably high density is also important.


  By PanEris using Melati.

Previous chapter/page Back Home Email this Search Discuss Bookmark Next chapter/page
Copyright: All texts on Bibliomania are © Bibliomania.com Ltd, and may not be reproduced in any form without our written permission. See our FAQ for more details.