Theoretically it would seem almost incredible that the building up of higher elements or the annihilation of protons and electrons could proceed with any degree of vigour in regions where encounters are rare and there is no high temperature or intense radiation to wake the atoms from apathy; but the more we face the difficulties of all theories of the release of subatomic energy the less inclined we are to condemn any evidence as incredible. The presence of sodium and calcium in the cosmical cloud, of helium and nebulium in the diffuse nebulae, of titanium and zirconium in large quantities in the atmospheres of the youngest stars, bears witness that the evolution of the elements is already far advanced during the diffuse prestellar stage unless indeed our universe is built from the debris of a former creation. From this point of view it is fitting that we should discern symptoms of subatomic activity in open space. But the physicist may well shake his head over the problem. How are four protons and two electrons to gather together to form a helium nucleus in a medium so rare that the free path lasts for days? The only comfort is that the mode of this occurrence is (according to present knowledge) so inconceivable under any conditions of density and temperature that we may postulate it in the nebulae -- on the principle that we may as well be hung for a sheep as for a lamb.

Evolution of the Stars

Twenty years ago stellar evolution seemed to be very simple. The stars begin by being very hot and gradually cool down until they go out.

On this view the temperature of a star indicated the stage of evolution that it had reached. The outline of the sequence was sufficiently indicated by the crude observation of colour -- white-hot, yellow-hot, red-hot; a more detailed order of temperature was ascertained by examining the light with a spectroscope. The red stars naturally came last in the sequence; they were the oldest stars on the verge of extinction. Sir Norman Lockyer strongly opposed this scheme and to a considerable extent anticipated the more modern view; but most astronomers pinned their faith to it up to about 1913. Ten years ago more knowledge had been gained of the densities of stars. It seemed likely that density would be a more direct criterion of evolutionary development than temperature. Granted that a star condenses out of nebulous material, it must in the youngest stage be very diffuse; from that stage it will contract and steadily increase in density.

But this necessitates an entire rearrangement of the scheme of evolution, because the order according to density is by no means the same as the order according to surface temperature. On the former view all the cool red stars were old and dying. But a large number of them are now found to be extremely diffuse -- stars like Betelgeuse, for instance. These must be set down as the very youngest of the stars; after all it is not unnatural that a star just beginning to condense out of nebulous material should start at the lowest stage of temperature. Not all the red stars are diffuse; there are many like Krueger 60 which have high density, and these we leave undisturbed as representing the last stage of evolution. Both the first and last periods of a star's life are characterized by low temperature; in between whiles the temperature must have risen to a maximum and fallen again.

The 'giant and dwarf theory' proposed by Hertzsprung and Russell brought these conclusions into excellent order. It recognized a series of giant stars, comparatively diffuse stars with temperature rising, and a series of dwarf or dense stars with temperature falling. The two series merged at the highest temperatures. An individual star during its lifetime went up the giant series to its highest temperature and then down the dwarf series. The brightness remained fairly steady throughout the giant stage because the continually increasing temperature counterbalanced the reduction of the surface area of the star; in the dwarf stage the decreasing temperature and the contraction of the surface caused a rapid decrease of brightness as the star progressed down the series. This was in accordance with observation. The theory has dominated most recent astrophysical research and has been instrumental in bringing to light many important facts. One example must suffice. Although we may have a giant and a dwarf star with the same surface temperature, and therefore showing very similar spectra, nevertheless a close examination of the spectrum reveals tell-tale differences; and it is now quite easy to ascertain from the spectrum whether the star is a diffuse giant or a dense dwarf.


  By PanEris using Melati.

Previous chapter/page Back Home Email this Search Discuss Bookmark Next chapter/page
Copyright: All texts on Bibliomania are © Bibliomania.com Ltd, and may not be reproduced in any form without our written permission. See our FAQ for more details.