|
||||||||
On May 23, 1833, he read a paper before the Royal Society 'On a new Law of Electric Conduction.' He found that, though the current passed through water, it did not pass through ice:--why not, since they are one and the same substance? Some years subsequently he answered this question by saying that the liquid condition enables the molecule of water to turn round so as to place itself in the proper line of polarization, while the rigidity of the solid condition prevents this arrangement. This polar arrangement must precede decomposition, and decomposition is an accompaniment of conduction. He then passed on to other substances; to oxides and chlorides, and iodides, and salts, and sulphurets, and found them all insulators when solid, and conductors when fused. In all cases, moreover, except one--and this exception he thought might be apparent only--he found the passage of the current across the fused compound to be accompanied by its decomposition. Is then the act of decomposition essential to the act of conduction in these bodies? Even recently this question was warmly contested. Faraday was very cautious latterly in expressing himself upon this subject; but as a matter of fact he held that an infinitesimal quantity of electricity might pass through a compound liquid without producing its decomposition. De la Rive, who has been a great worker on the chemical phenomena of the pile, is very emphatic on the other side. Experiment, according to him and others, establishes in the most conclusive manner that no trace of electricity can pass through a liquid compound without producing its equivalent decomposition.2 Faraday has now got fairly entangled amid the chemical phenomena of the pile, and here his previous training under Davy must have been of the most important service to him. Why, he asks, should decomposition thus take place?--what force is it that wrenches the locked constituents of these compounds asunder? On the 20th of June, 1833, he read a paper before the Royal Society 'On Electro-chemical Decomposition,' in which he seeks to answer these questions. The notion had been entertained that the poles, as they are called, of the decomposing cell, or in other words the surfaces by which the current enters and quits the liquid, exercised electric attractions upon the constituents of the liquid and tore them asunder. Faraday combats this notion with extreme vigour. Litmus reveals, as you know, the action of an acid by turning red, turmeric reveals the action of an alkali by turning brown. Sulphate of soda, you know, is a salt compounded of the alkali soda and sulphuric acid. The voltaic current passing through a solution of this salt so decomposes it, that sulphuric acid appears at one pole of the decomposing cell and alkali at the other. Faraday steeped a piece of litmus paper and a piece of turmeric paper in a solution of sulphate of soda: placing each of them upon a separate plate of glass, he connected them together by means of a string moistened with the same solution. He then attached one of them to the positive conductor of an electric machine, and the other to the gas-pipes of this building. These he called his 'discharging train.' On turning the machine the electricity passed from paper to paper through the string, which might be varied in length from a few inches to seventy feet without changing the result. The first paper was reddened, declaring the presence of sulphuric acid; the second was browned, declaring the presence of the alkali soda. The dissolved salt, therefore, arranged in this fashion, was decomposed by the machine, exactly as it would have been by the voltaic current. When instead of using the positive conductor he used the negative, the positions of the acid and alkali were reversed. Thus he satisfied himself that chemical decomposition by the machine is obedient to the laws which rule decomposition by the pile. And now he gradually abolishes those so-called poles, to the attraction of which electric decomposition had been ascribed. He connected a piece of turmeric paper moistened with the sulphate of soda with the positive conductor of his machine; then he placed a metallic point in connection with his discharging train opposite the moist paper, so that the electricity should discharge through the air towards the point. The turning of the machine caused the corners of the piece of turmeric paper opposite to the point to turn brown, thus declaring the presence of alkali. He changed the turmeric for litmus paper, and placed it, not in connection with his conductor, but with his discharging train, a metallic point connected with the conductor being fixed at a couple of inches from the paper; on turning the machine, acid was liberated at the edges and corners of the litmus. He then placed a series of pointed pieces of paper, each separate piece being composed of two halves, one of litmus and the other of turmeric paper, and all moistened with sulphate of soda, in the line of the current from the machine. The pieces of paper were separated from each other by spaces of air. The machine was turned; and it was always found that at the point where the electricity entered the paper, litmus was reddened, and at the point where it quitted the paper, turmeric was browned. 'Here,' he urges, 'the poles are entirely abandoned, but we have still electrochemical |
||||||||
|
||||||||
|
||||||||
Copyright: All texts on Bibliomania are © Bibliomania.com Ltd, and may not be reproduced in any form without our written permission. See our FAQ for more details. | ||||||||