that if a polarized beam, after having passed through the oil of turpentine in its natural state, could by any means be reflected back through the liquid, the rotation impressed upon the direct beam would be exactly neutralized by that impressed upon the reflected one. Not so with the induced magnetic effect. Here it is manifest that the rotation would be doubled by the act of reflection. Hence Faraday concludes that the particles of the oil of turpentine which rotate by virtue of their natural force, and those which rotate in virtue of the induced force, cannot be in the same condition. The same remark applies to all bodies which possess a natural power of rotating the plane of polarization.

And then he proceeded with exquisite skill and insight to take advantage of this conclusion. He silvered the ends of his piece of heavy glass, leaving, however, a narrow portion parallel to two edges diagonally opposed to each other unsilvered. He then sent his beam through this uncovered portion, and by suitably inclining his glass caused the beam within it to reach his eye first direct, and then after two, four, and six reflections. These corresponded to the passage of the ray once, three times, five times, and seven times through the glass. He thus established with numerical accuracy the exact proportionality of the rotation to the distance traversed by the polarized beam. Thus in one series of experiments where the rotation required by the direct beam was 12°, that acquired by three passages through the glass was 36°, while that acquired by five passages was 60°. But even when this method of magnifying was applied, he failed with various solid substances to obtain any effect; and in the case of air, though he employed to the utmost the power which these repeated reflections placed in his hands, he failed to produce the slightest sensible rotation.

These failures of Faraday to obtain the effect with gases seem to indicate the true seat of the phenomenon. The luminiferous ether surrounds and is influenced by the ultimate particles of matter. The symmetry of the one involves that of the other. Thus, if the molecules of a crystal be perfectly symmetrical round any line through the crystal, we may safely conclude that a ray will pass along this line as through ordinary glass. It will not be doubly refracted. From the symmetry of the liquid figures, known to be produced in the planes of freezing, when radiant heat is sent through ice, we may safely infer symmetry of aggregation, and hence conclude that the line perpendicular to the planes of freezing is a line of no double refraction; that it is, in fact, the optic axis of the crystal. The same remark applies to the line joining the opposite blunt angles of a crystal of Iceland spar. The arrangement of the molecules round this line being symmetrical, the condition of the ether depending upon these molecules shares their symmetry; and there is, therefore, no reason why the wavelength should alter with the alteration of the azimuth round this line. Annealed glass has its molecules symmetrically arranged round every line that can be drawn through it; hence it is not doubly refractive. But let the substance be either squeezed or strained in one direction, the molecular symmetry, and with it the symmetry of the ether, is immediately destroyed and the glass becomes doubly refractive. Unequal heating produces the same effect. Thus mechanical strains reveal themselves by optical effects; and there is little doubt that in Faraday's experiment it is the magnetic strain that produces the rotation of the plane of polarization.2

Faraday never, to my knowledge, attempted to give, even in conversation, a picture of the molecular condition of his heavy glass when subjected to magnetic influence. In a mathematical investigation of the subject, published in the Proceedings of the Royal Society for 1856, Sir William Thomson arrives at the conclusion that the 'diamagnetic' is in a state of molecular rotation.


  By PanEris using Melati.

Previous chapter/page Back Home Email this Search Discuss Bookmark Next chapter
Copyright: All texts on Bibliomania are © Bibliomania.com Ltd, and may not be reproduced in any form without our written permission. See our FAQ for more details.